

2. Glue the backs together

3. Cut along the dashed line

Stopwatch Cards

Stopwatch Cards

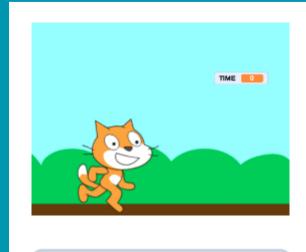
Use these cards in this order:

- 1. Create a Variable
- 2. Start the Clock
- 3. Stop and Reset
- 4. Get Moving
- 5. Time the Sprite
- 6. Background Effects

microbit.org/scratch

microbit.org/scratch

2. Glue the backs together



3. Cut along the dashed line

Create a Variable

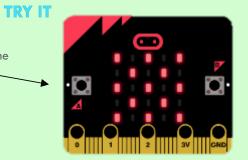
Add a changeable value on the screen.

TIME

microbit.org/scratch

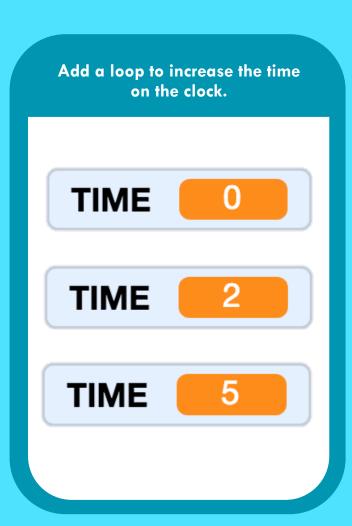
Create a Variable

microbit.org/scratch


GET READY

ADD THIS CODE

Click the **A button** to advance the number on the screen.


2. Glue the backs together

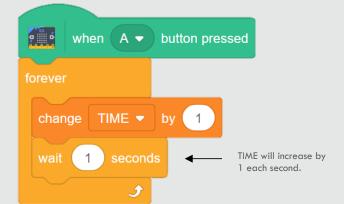
3. Cut along the dashed line

Start the Clock

microbit.org/scratch

Start the Clock

microbit.org/scratch


GET READY

A stopwatch should advance each second.

A forever loop will increase the time as long as the program is running.

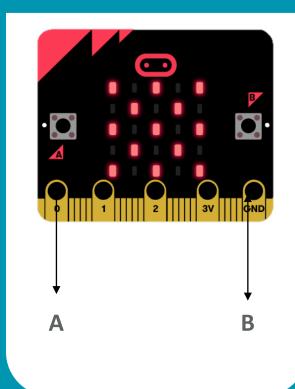
ADD THIS CODE

TRY IT

Test your timer against a clock.

Does the time change each second?

2. Glue the backs together



3. Cut along the dashed line

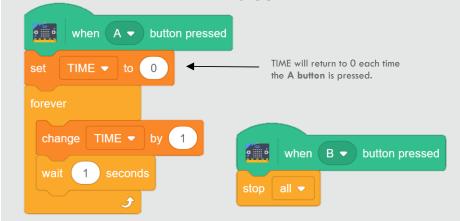
Stop and Reset

Control your stopwatch with the A and B buttons.

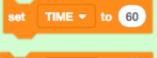
microbit.org/scratch

Stop and Reset

microbit.org/scratch


GET READY

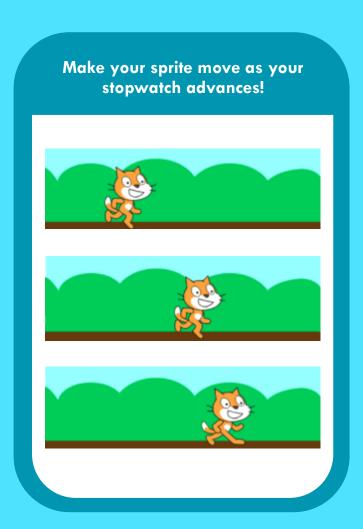
Add a RESET and a STOP code.


ADD THIS CODE

TRY IT

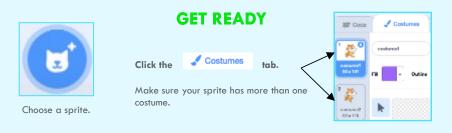
Click each button on the micro:bit and see how they affect the time displayed on screen.

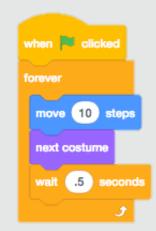
CHALLENGE: Can you change your stopwatch into a countdown clock?


2. Glue the backs together

3. Cut along the dashed line

Get Moving


microbit.org/scratch



Get Moving

microbit.org/scratch

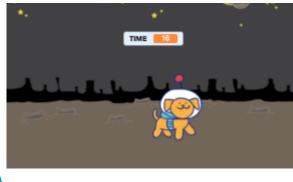
ADD THIS CODE

TRY IT

What happens when your sprite reaches the end of the screen?

Add these codes into the loop to fix the problem!

2. Glue the backs together


3. Cut along the dashed line

Time the Sprite

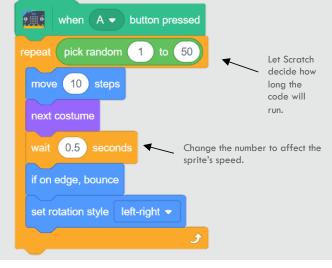
Let Scratch decide how many seconds your sprite will move. Use your stopwatch to figure it out.

microbit.org/scratch

Time the Sprite

microbit.org/scratch

GET READY



Start your sprite with the A button.

This will make the stopwatch and the sprite move at the same time.

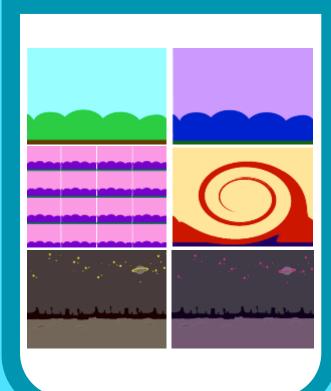
ADD THIS CODE

TRY IT

How long did the sprite move?

Freeze the clock by pushing the **B button** on the micro:bit when the sprite stops.

2. Glue the backs together



3. Cut along the dashed line

Background Effects

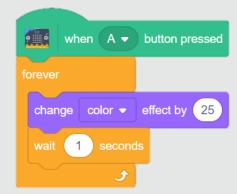
Use graphic effects to alter your background as the program runs.

microbit.org/scratch

Background Effects

GET READY

Choose a background.



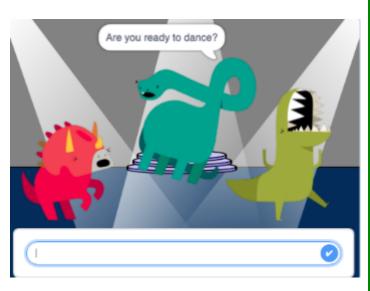
Click the Backdrops tab.

ADD THIS CODE

TRY IT

Experiment with other background effects.

CHALLENGE: Reset your graphic effect. Where should this block go in your code?


2. Glue the backs together

3. Cut along the dashed line

Dance Cards

Dance Cards

Use these cards in this order:

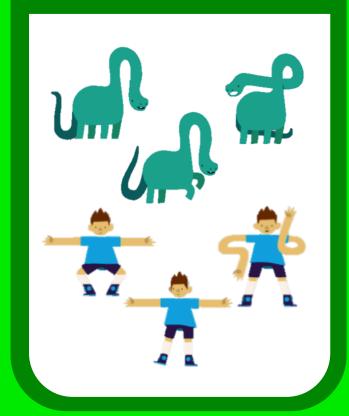
- 1. Show Your Moves
- 2. Add Music
- 3. Spin
- 4. Change Colors
- 5. Copy & Paste: Add Friends
- 6. Ask and Answer

microbit.org/scratch

microbit.org/scratch

0

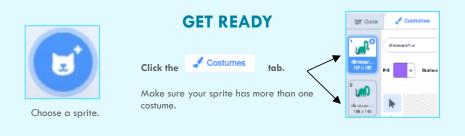
1. Fold the card in half

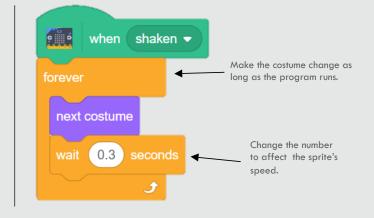

2. Glue the backs together

3. Cut along the dashed line

Show Your Moves

Change costumes to make your sprite look like it is dancing around!


microbit.org/scratch



Show Your Moves

microbit.org/scratch

ADD THIS CODE

TRY IT

Shake your micro:bit.

Make your sprite dance on the dance floor!

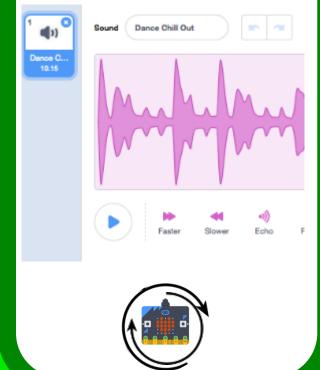
Looks

Add a background.

0

1. Fold the card in half

2. Glue the backs together



3. Cut along the dashed line

Add Music

Make your character dance to a beat!
Choose a soundtrack for the scene.

Sound Dance Chill Out



microbit.org/scratch

micro:bit

Add Music microbit.org/scratch

Make sure to choose **PLAY SOUND UNTIL DONE** so that the entire track plays before starting over.

Edit the track in the Sounds tab.

TRY IT

play sound Dance Chill Out • until done

ound Dance Chill Out

0

1. Fold the card in half



2. Glue the backs together

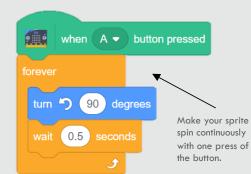
3. Cut along the dashed line

Spin

microbit.org/scratch

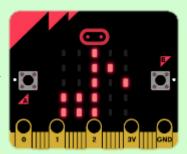
Spinmicrobit.org/scratch

GET READY


Start your sprite with the A button.

Control when and how fast your sprite spins in a circle.

ADD THIS CODE

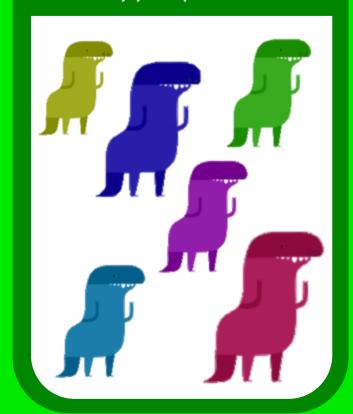

Make the sprite spin once with each press of the button.

TRY IT

Click the **A button** to spin the sprite.

TIP: Experiment with the degrees of rotation!

2. Glue the backs together



3. Cut along the dashed line

Change Colors

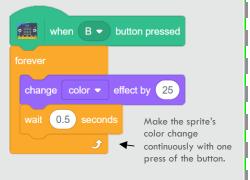
Add image effects to change the way your sprite looks.

microbit.org/scratch

Change Colors

microbit.org/scratch

GET READY



Change your sprite's color with the B button.

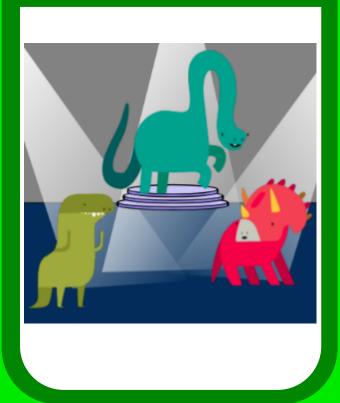
Control when and how fast your sprite changes its appearance.

ADD THIS CODE

TRY IT

Click the **B button** to change the sprite's color.

CHALLENGE: What other effects can you use on your sprite?


2. Glue the backs together

3. Cut along the dashed line

Copy & Paste: Add Friends

Duplicate code onto additional sprites.

microbit.org/scratch

Copy & Paste: Add Friends microbit.org/scratch

GET READY

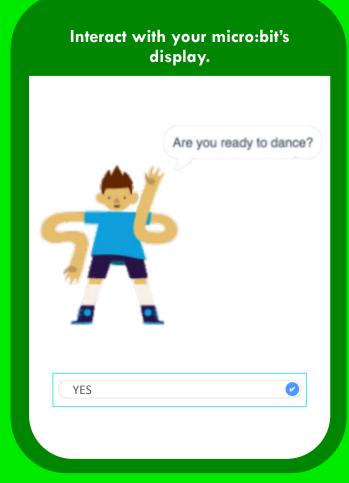
Add additional sprites.

ADD THIS CODE

Drag and drop your code from the first sprite onto the additional characters.

Click each sprite to make sure that the code transferred.

TRY IT


2. Glue the backs together

3. Cut along the dashed line

Ask and Answer

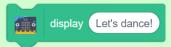
microbit.org/scratch


Ask and Answer

microbit.org/scratch

Sensing

GET READY


Use the Sensing blocks to interact with your micro:bit.

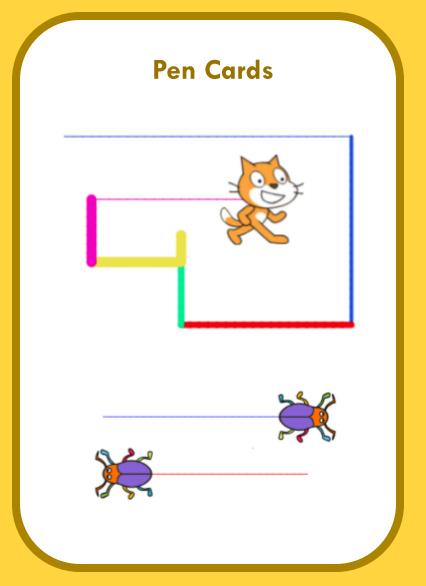
ADD THIS CODE

If you answer "yes," a message will be sent to the micro:bit. Otherwise, the program will ask the question again.

TRY IT

Run the program. Answer the question and check your micro:bit.

Can you read the message?



2. Glue the backs together

3. Cut along the dashed line

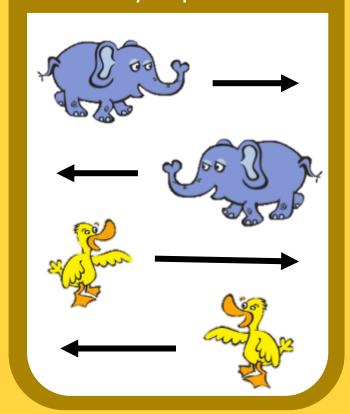
Pen Cards

Use these cards in this order:

- 1. Back and Forth
- 2. Draw a Line
- 3. Special Effects
- 4. Random Drawing
- 5. Voting Machine
- 6. Stamp and Record

microbit.org/scratch

microbit.org/scratch


2. Glue the backs together

3. Cut along the dashed line

Back and Forth

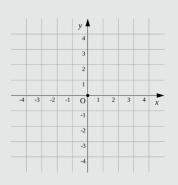
Use the A and B buttons to move your sprite.

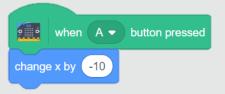
microbit.org/scratch

micro:bit

Back and Forth

microbit.org/scratch


GET READY


Add a sprite and a background.

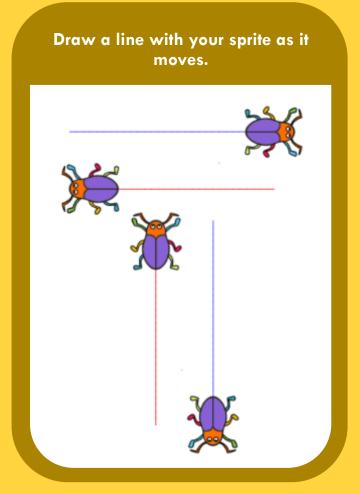
ADD THIS CODE

when B → button pressed change x by 10

TRY IT

Press the A and B buttons to move your sprite.

CHALLENGE: Can you make your sprite move up and down instead of left and right?



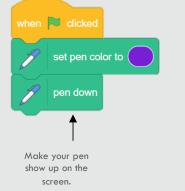
2. Glue the backs together

3. Cut along the dashed line

Draw a Line

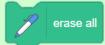
Draw a Line

GET READY



Connect the Pen extension.

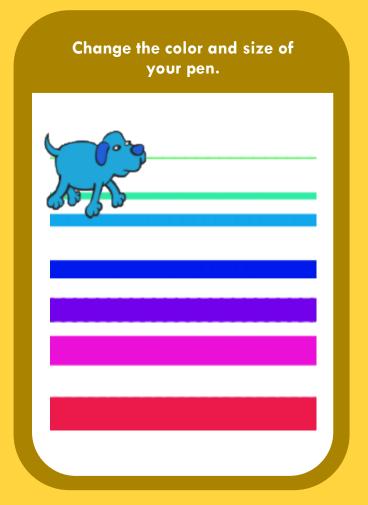
ADD THIS CODE



TRY IT

Press the A and B buttons to move your sprite. Does it draw a line?

the line?



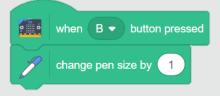
2. Glue the backs together

3. Cut along the dashed line

Special Effects

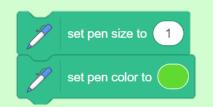
3

Special Effects


microbit.org/scratch

Activate the pen. -

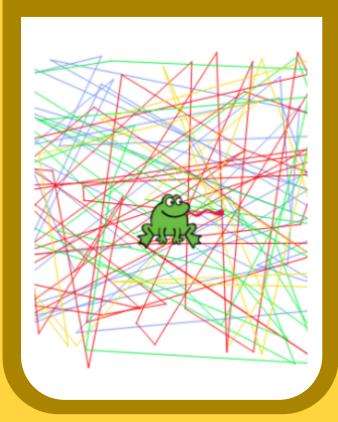
ADD THIS CODE



TRY IT

Press the A and B buttons to change the pen.

CHALLENGE: Can you add code to make the pen go back to its original settings?


2. Glue the backs together

3. Cut along the dashed line

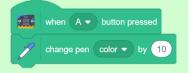
Random Drawing

Make your sprite draw as it moves randomly around the stage.

microbit.org/scratch

Random Drawing

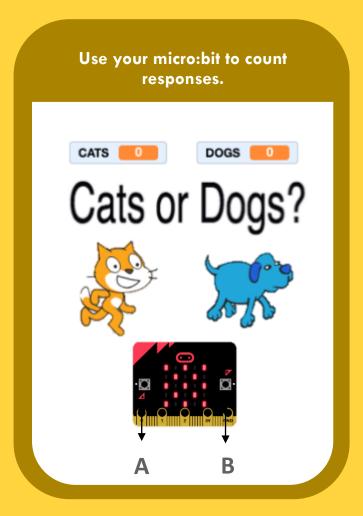
microbit.org/scratch


ADD THIS CODE

TRY IT

Put it all together. Add the **A and B buttons** to change the effects.

Can you make your sprite draw?

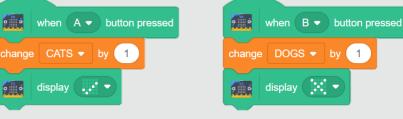


2. Glue the backs together

3. Cut along the dashed line

Voting Machine

microbit.org/scratch


micro:bit

Voting Machine

microbit.org/scratch

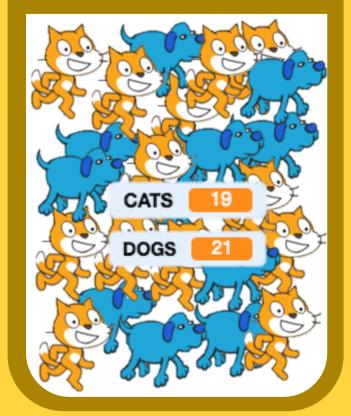
ADD THIS CODE

Variables will increase with each button press.

TRY IT

Change the variables by clicking the **A button** or **B button**. What do you notice on your micro:bit?

CHALLENGE: Can you add a RESET script to change the numbers back to zero?


2. Glue the backs together

3. Cut along the dashed line

Stamp and Record

Use the stamp function to add sprites as the voting machine advances.

microbit.org/scratch

Stamp and Record

microbit.org/scratch

Choose in the Blocks Palette.

GET READY

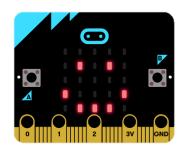
Make a Variable

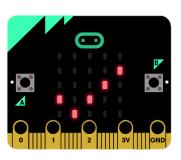
Make 2 variables and check the boxes to make them appear on the screen.

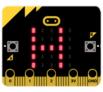
ADD THIS CODE

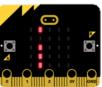
TRY IT

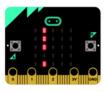
Add a RESET code and then try it out! Do stamped sprites appear?


2. Glue the backs together




3. Cut along the dashed line




Display Cards

Display Cards

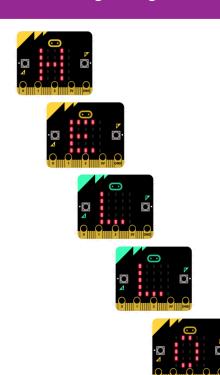
Use these cards in this order:

- 1. Say Hello
- 2. Add Your Name
- 3. Display Image
- 4. Create an Emoji
- 5. Tell Time
- 6. Make a Wristband
- 7. Make a Badge

microbit.org/scratch

microbit.org/scratch

2. Glue the backs together



3. Cut along the dashed line

Say Hello

Make your micro:bit display a greeting.

microbit.org/scratch

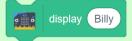
Say Hello

microbit.org/scratch

GET READY

Connect your micro:bit to Scratch.

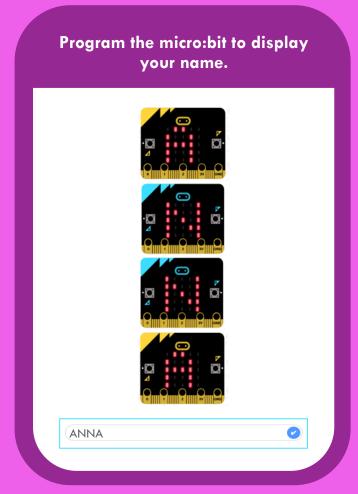
ADD THIS CODE



TRY IT

Move your micro:bit. Can you read the message?

CHALLENGE: What else can you make the display say?

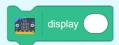


2. Glue the backs together

3. Cut along the dashed line

Add Your Name

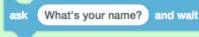
microbit.org/scratch


Add Your Name

microbit.org/scratch

Sensing


GET READY


Use the Sensing blocks to interact with your micro:bit.

ADD THIS CODE

TRY IT

Start the program and type your name. What happens on your micro:bit?

Combine your answer into a phrase.

2. Glue the backs together

3. Cut along the dashed line

Display Image

Depict an image on your display.

microbit.org/scratch

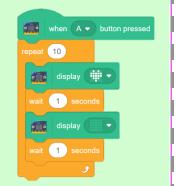
Display Image microbit.org/scratch


ADD THIS CODE

MAKE A DESIGN

Use the 5x5 grid to create your design.

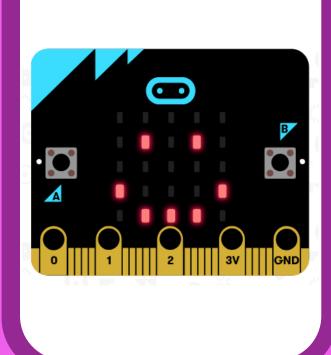
Turn on/off each light by clicking on the desired blocks.



TRY IT

Click the A button to display the image on your micro:bit.

CHALLENGE: Can you make the lights in your image blink on and off repeatedly?


2. Glue the backs together

3. Cut along the dashed line

Create an Emoji

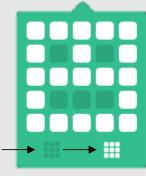
Create your own emoji for the display.

microbit.org/scratch

micro:bit

Create an Emoji

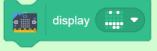
microbit.org/scratch


ADD THIS CODE

MAKE A DESIGN

Click the individual blocks to turn them on in your design.

Click to turn all lights off/on.



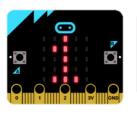


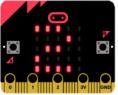
TRY IT

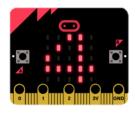
Click the **A button** to display the image on your micro:bit.

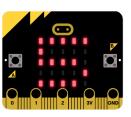
CHALLENGE: What other emojis can you create?

2. Glue the backs together

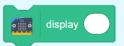



3. Cut along the dashed line


Tell Time

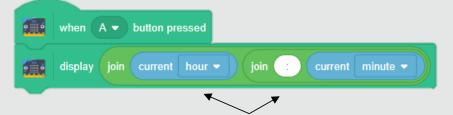

Display the correct time on your micro:bit.

microbit.org/scratch


Tell Time

microbit.org/scratch

Sensing


GET READY

Use the Sensing blocks to interact with your micro:bit.

ADD THIS CODE

Join the current hour and minute together using these Operator blocks.

TRY IT

Click the **A button** to display the time on your micro:bit.

CHALLENGE: What other information can you make your micro:bit display?

year
month
date
day of week
✓ hour
minute
second

current hour ▼

2. Glue the backs together

3. Cut along the dashed line

Make a Wristband

Wear your micro:bit on your wrist!

microbit.org/scratch

Make a Wristband

microbit.org/scratch

MATERIALS

paper

(2in)

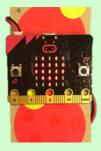
Craft materials

Velcro

PROCEDURE

Decorate with craft materials.

Front



Use heavy paper or folded Duct tape to create the wristband.

Back

Adhere Velcro fasteners.

TRY IT

Use a small amount of hot glue or a
Glue Dot to secure your micro:bit to the
front of the wristband.

Attach the battery pack to the back.

***Hot glue placed on the back of the micro:bit (avoiding the pins) will not cause harm.

2. Glue the backs together

3. Cut along the dashed line

Make a Badge

Wear your micro:bit on your shirt!

microbit.org/scratch

Make a Badge microbit.org/scratch

MATERIALS

Craft foam

Scissors

Hot glue or Glue Dots

Craft materials

String

Paper clip

PROCEDURE

BACK

Use foam to design the shape of your badge. Decorate with craft supplies.

Attach your micro:bit with hot glue to the front of the badge. Connect the battery pack to the back.

TRY IT

Add a paperclip to the back of the battery pack to clip the badge onto your shirt!

To wear your badge as a necklace, poke a hole at each of the top corners and attach a string.

 $\ensuremath{^{***}}\xspace$ hat glue placed on the back of the micro:bit (avoiding the pins) will not cause harm.

2. Glue the backs together

3. Cut along the dashed line

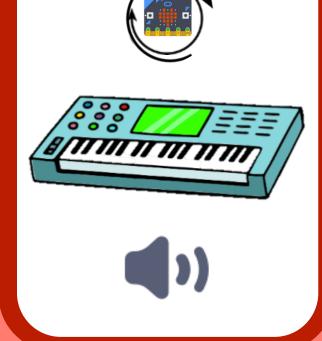
Music Cards

Use these cards in this order:

- 1. Play a Note
- 2. Play a Chord
- 3. Sound Effects
- 4. Make an Instrument
- 5. Wire the Instrument
- 6. Program the Pins
- 7. Attach the micro:bit
- 8. Set the Stage

microbit.org/scratch

microbit.org/scratch

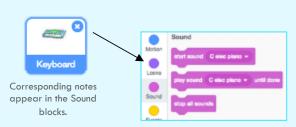

2. Glue the backs together

3. Cut along the dashed line

Play a Note

Make your sprite play a sound.

microbit.org/scratch



Play a Note microbit.org/scratch

GET READY

Add a sprite.

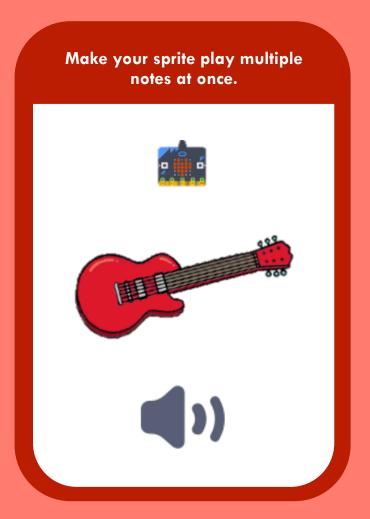
ADD THIS CODE

TRY IT

Shake your micro:bit. Does the note play?

CHALLENGE: What happens when you add multiple notes?

- ✓ C elec piano D elec piano
- E elec piano
- F elec piano G elec piano
- A elec piano
- B elec piano
- C2 elec piano



2. Glue the backs together

3. Cut along the dashed line

microbit.org/scratch

micro:bit

Play a Chord microbit.org/scratch

GET READY

start sound C elec guitar play sound C elec guitar ▼ until done

Look closely at these two blocks. What is the difference between them?

ADD THIS CODE

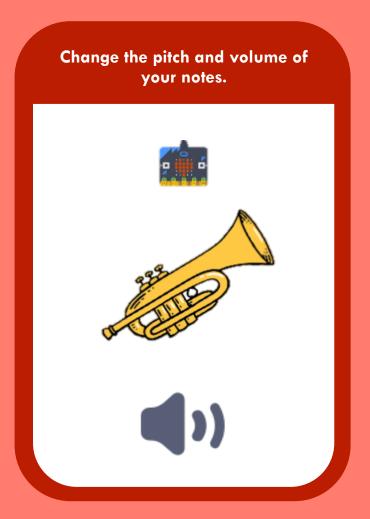
when (A ▼) button pressed

All three notes will play at the same time. start sound G elec guitar -

TRY IT

CHALLENGE: Can you make any other chords?

What happens when you use these blocks instead?



2. Glue the backs together

3. Cut along the dashed line

Sound Effects

microbit.org/scratch

3

Sound Effects

microbit.org/scratch

GET READY Trumpet Corresponding notes appaga in the Sound

ADD THIS CODE

appear in the Sound blocks.

TRY IT

Press the A and B buttons to change the sound.

What other sound effects can you add?

CHALLENGE: Can you add a RESET block to make your sounds go back to their original notes?

clear sound effects


2. Glue the backs together

3. Cut along the dashed line

Make an Instrument

Create your own instrument using cardboard and craft materials and play music via your micro:bit.

microbit.org/scratch

Make an Instrument

microbit.org/scratch

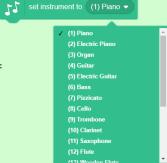
PROCEDURE

Using cardboard or heavy paper, draw your favorite instrument.

Decorate with craft supplies.

Leave room to add conductive materials.

The micro:bit will work by creating circuits that close and open as you touch the keys on your instrument!



What instruments can you make?

Scratch offers sounds for the following instruments:

2. Glue the backs together

3. Cut along the dashed line

Wire the Instrument

Use your instrument to create a circuit using conductive materials.

microbit.org/scratch

Wire the Instrument

microbit.org/scratch

MATERIALS

Tinfoil

Copper

Tape

Scissors

Glue stick

Craft materials

PROCEDURE

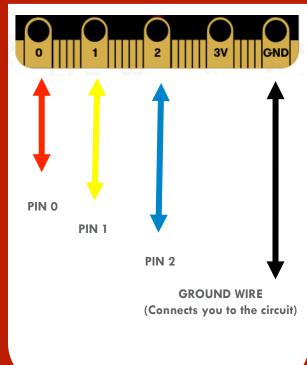
Cut strips of tinfoil, or add copper tape to each key or string.

Make sure the metal touches an edge on your instrument so that it can be connected to the micro:bit.

TRY IT

Decorate. Make sure to leave your metal areas open!

Tinfoil and copper tape are both metal, which means they will conduct electricity. When your micro:bit is attached and you touch a conductive area, the computer will play the note!


2. Glue the backs together

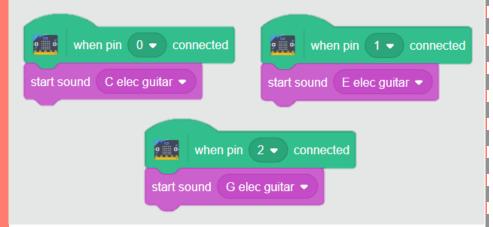
3. Cut along the dashed line

Program the Pins

Create codes that will correspond to the keys or strings on your instrument.

microbit.org/scratch

Program the Pins


microbit.org/scratch

MATERIALS

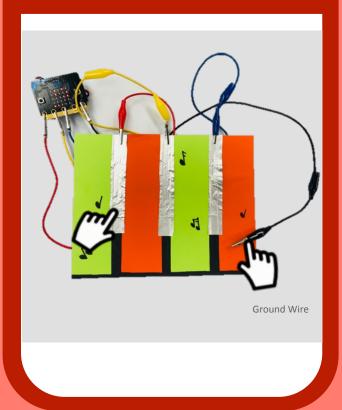
Alligator Clips

ADD THIS CODE

TRY IT

Clip your wires onto the pins as shown. Hold the ground wire in one hand and touch the metal end of one of the other wires. Does a note play?

CHALLENGE: Can you play multiple notes at once?


2. Glue the backs together

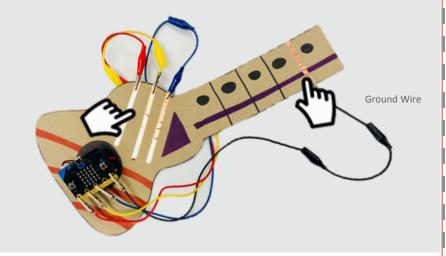
3. Cut along the dashed line

Attach the micro:bit

Use wires to connect the micro:bit to your instrument.

microbit.org/scratch

Attach the micro:bit


microbit.org/scratch

GET READY

Attach the end of each alligator clip to the conductive areas of your instrument.

PROCEDURE

Either hold the ground wire in your hand, or attach it to a conductive spot on the instrument that you know you will touch.

TRY IT

Rock on! Practice playing music on your instrument!

When you hold the ground wire and touch a key, you create a completed circuit between you and your computer, causing Scratch to play,

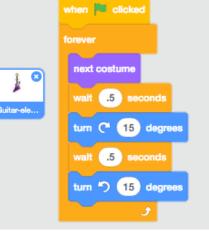
2. Glue the backs together

3. Cut along the dashed line

Make the sprites move on the screen as you play your instrument.

microbit.org/scratch

Set the Stage microbit.org/scratch



Add sprites and a background.

GET READY

ADD THIS CODE

forever

wait .5 seconds

change size by 10

wait .5 seconds

change size by -10

TRY IT

Put it all together!

Can you play your instrument while the animation plays on the screen?